Meden School Curriculum Planning							
Subject	Biology	Year Group	11	Sequence No.	1	Торіс	itance, Variation Jution

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from students before they start teaching new content ?	Io teachers need retrieve from ts before they start teaching new it? What specific ambitious knowledge do teachers need teach students in this sequence of learning?	
KS3 Learning Year 7	L1: Sexual vs Asexual reproduction	L3: Sex determination Students could explore the
<u>Reproduction topic</u> Introduced to the structure of egg and sperm cells.	sperm and egg cells in animals pollen and egg cells in flowering plants.	differences between biological sex and gender to link to LGBTQ+
Year 8 Inheritance topic	In sexual reproduction there is mixing of genetic information which leads to variety in the offspring. The formation of gametes involves meiosis .	<u>L4: The human genome</u> Discuss the importance of
Introduction to gametes, fertilisation within animals. Understanding of characteristics coming from	Asexual reproduction involves only one parent and no fusion of gametes. There is no mixing of genetic information. This leads to genetically identical offspring (clones). Only mitosis is involved.	understanding the human genome. E.g., the search for genes linked to different
both genetic and environmental. Selective breeding of animals and cloning of plants.	L2: Meiosis Meiosis halves the number of chromosomes in gametes and fertilisation restores the full number of chromosomes	types of disease understanding and treatment of inherited disorders
Darwin vs Linnaeus Formation of fossils.	Cells in reproductive organs divide by meiosis to form gametes . When a cell divides to form gametes : copies of the genetic information are made, the cell divides twice to form four gametes .	use in tracing human migration patterns from the past.
<u>Plant structure topic</u> Introduction to pollination and fertilisation in	each with a single set of chromosomes all gametes are genetically different from each other.	<u>L7: Genetic disorders</u> Students should make informed judgements
flowering plants.	mitosis. The number of cells increases. As the embryo develops cells differentiate.	about the economic, social and ethical issues concerning embryo screening, given appropriate
	L3: Sex determination	

<u>Cell structure topic</u> The organelles within prokaryotic and eukaryotic cells. Examples of eukaryotic and prokaryotic cells. That prokaryotic cells contain a plasmid.

Ordinary human body cells contain **23 pairs** of **chromosomes**.

22 pairs control characteristics only, but one of the pairs carries the genes that determine sex.

In females the sex chromosomes are the same (XX).

In males the chromosomes are different (XY).

<u>L4: DNA</u>

The **genetic** material in the **nucleus** of a cell is composed of a **chemical** called **DNA**. **DNA** is a **polymer** made up of two strands forming a **double helix**. The **DNA** is contained in **structures** called **chromosomes**.

A gene is a small section of **DNA** on a **chromosome**. Each **gene** codes for a particular **sequence** of **amino acids**, to make a **specific protein**.

The **genome** of an **organism** is the **entire genetic material** of that **organism**. The whole human genome has now been studied and this will have great importance for medicine in the future.

L5: Genetic inheritance

Some **characteristics** are controlled by a single **gene**, such as: fur colour in mice; and red-green colour blindness in humans. Each **ge**ne may have different forms called **alleles**.

The **allele**s present, or **genotype**, operate at a **molecula**r level to develop **characteristics** that can be **expressed** as a **phenotype**.

A **dominant allele** is always expressed, even if only one copy is present. A **recessive allele** is only expressed if two copies are present (therefore no **dominant allele** present).

If the two **alleles** present are the same the **organism** is **homozygous** for that trait, but if the **alleles** are different they are **heterozygous**.

Most characteristics are a result of multiple genes interacting, rather than a single gene.

<u> L6: Cross Diagrams – Skills lesson</u>

Students should be able to understand the concept of probability in predicting the results of a

L12 & 13 – Antibiotics and Antibiotic resistance

Students to explore what can be done to stop drug resistant pathogens emerging. Oracy opportunity of factsheets for 'doctors' or 'public' and then present to the class.

single gene cross but recall that most phenotype features are the result of multiple genes rather than single gene inheritance .	
Students should be able to use direct proportion and simple ratios to express the outcome of a genetic cross .	
Students should be able to complete a Punnett square diagram and extract and interpret information from genetic crosses and family trees .	
L7: Genetic Disorders	
Disorders are inherited. These disorders are caused by the inheritance of certain alleles. Polydactyly (having extra fingers or toes) is caused by a dominant allele.	
Cystic fibrosis (a disorder of cell membranes) is caused by a recessive allele.	
Embryo screening can help to identify if an offspring will have a genetic disorder . There are economic , social and ethical issues concerning embryo screening to consider with embryo screening.	
L8: Genetic engineering	
Genetic engineering is a process which involves modifying the genome of an organism by introducing a gene from another organism to give a desired characteristic.	
Plant crops have been genetically engineered to be resistant to diseases or to produce bigger, better fruits.	
Bacterial cells have been genetically engineered to produce useful substances such as human insulin to treat diabetes.	
(HT only) In genetic engineering:	
 Enzymes are used to isolate the required gene; this gene is inserted into a vector, usually a bacterial plasmid or a virus 	
 The vector is used to insert the gene into the required cells 	
 Genes are transferred to the cells of animals, plants or microorganisms at an early stage in their development so that they develop with desired characteristics. 	
<u>L9: Pros and Cons of Genetic Engineering.</u>	

The benefits and risks of genetic engineering in agriculture and in medicine and that some people have objections.	
In genetic engineering , genes from the chromosomes of humans and other organisms can be 'cut out' and transferred to cells of other organisms .	
Crops that have had their genes modified in this way are called genetically modified (GM) crops. GM crops include ones that are resistant to insect attack or to herbicides . GM crops generally show increased yields .	
Concerns about GM crops include the effect on populations of wild flowers and insects . Some people feel the effects of eating GM crop s on human healt h have not been fully explored.	
Modern medical research is exploring the possibility of genetic modification to overcome some inherited disorders .	
L10: Variation	
The genome and its interaction with the environment influence the development of the phenotype of an organism .	
Differences in the characteristics of individuals in a population are called variation and may be due to differences in: the genes they have inherited (genetic causes)	
, the conditions in which they have developed (environmental causes) or a combination of genes and the environment .	
There is usually extensive genetic variation within a population of a species recall that all variants arise from mutations and that: most have no effect on the phenotype ; some influence phenotype ; very few determine phenotype .	
Mutations occur continuously. Very rarely a mutation will lead to a new phenotype. If the new phenotype is suited to an environmental change it can lead to a relatively rapid change in the species e.g., the peppered moth.	
L11: Selective Breeding	
Selective breeding (artificial selection) is the process by which humans breed plants and animals for desired genetic characteristics . Humans have been doing this for thousands of	

years since they first bred food crops from wild plants and domesticated animals.
Selective breeding involves choosing parents with the desired characteristic from a mixed population. They are bred together. From the offspring those with the desired characteristic are bred together. This continues over many generations until all the offspring show the desired characteristic.
The characteristic can be chosen for userulness of appearance:
Disease resistance in food crops.
Animals which produce more meat or milk .
Domestic dogs with a gentle nature.
Large or unusual flowers.
Selective breeding can lead to 'inbreeding' where some breeds are particularly prone to disease or inherited defects.
L12 and 13: Antibiotics and antibiotic resistance
Antibiotics, such as penicillin, are medicines that help to cure bacterial disease by killing infective bacteria inside the body. It is important that specific bacteria should be treated by specific antibiotics.
Bacteria can evolve rapidly because they reproduce at a fast rate.
Mutations of bacterial pathogens produce new strains. Some strains might be resistant to antibiotics, and so are not killed. They survive and reproduce, so the population of the resistant strain rises. The resistant strain will then spread because people are not immune to it and there is no effective treatment.
MRSA is resistant to antibiotics.
To reduce the rate of development of antibiotic resistant strains:
Doctors should not prescribe antibiotics inappropriately, such as treating non-serious or viral
infections.
Patients should complete their course of antibiotics so all bacteria are killed and none survive to mutate and form resistant strains.

The development of new antibiotics is costly and slow. It is unlikely to keep up with the emergence of new resistant strains	
L14: Evolution and Darwin	
The theory of evolution by natural selection states that all species of living things have evolved from simple life forms that first developed more than three billion years ago. Evolution occurs through natural selection of variants that give rise to phenotypes best suited to their environment .	
If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have formed two new species.	
The theory of evolution by natural selection is now widely accepted. Evidence for Darwin's theory is now available as it has been shown that characteristics are passed on to offspring in genes . There is further evidence in the fossil record and the knowledge of how resistance to antibiotics evolves in bacteria .	
L15: Fossils	
Fossils are the ' remains ' of organisms from millions of years ago, which are found in rocks. Many early forms of life were soft-bodied , which means that they have left few traces behind. What traces there were have been mainly destroyed by geological activity . Therefore, scientists cannot be certain about how life began on Earth. Phylogenic trees can be used to show how different species have evolved over time and who their closest/most distant ancestor species were.	
Fossils may be formed:	
 from parts of organisms that have not decayed because one or more of the conditions needed for decay are absent. when parts of the organism are replaced by minerals as they decay. as preserved traces of organisms, such as footprints, burrows and rootlet traces. 	
L16: Extinction	
Extinctions occur when there are no remaining individuals of a species still alive.	
Students should be able to describe factors which may contribute to the extinction of a species .	

L17 & 18: Revision and EOTT	