Meden School Curriculum Planning							
Subject	Physics	Year Group	10	Sequence No.	19	Topic	Electricity P2a

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from students before they start teaching new content?	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
KS2 Circuit diagrams and symbols. Concept of a complete circuit. More batteries = brighter bulbs. Higher voltage batteries = brighter bulbs. More bulbs in a series circuit = dimmer bulbs KS3 Y7 Simple Circuits: electricity is a flow of charge (electrons). Current is measured using an ammeter and has the units Amps. Series and parallel circuits. Y9 Electricity and Resistance. Current and Potential difference trends in series and parallel. What is resistance, Ohms Law and resistance of a wire practical. Domestic electricity and wires in a plug.	L1: 6.2.1.1 Standard circuit diagram symbols Circuit diagrams use standard symbols. Convention is power supply at the top, circuit is rectangular	

L2: 6.2.1.1 Electrical charge and current
For electrical charge to flow through a closed circuit the circuit must include a source of potential difference. Electric current is a flow of electrical charge. The size of the electric current is the rate of flow of electrical charge. Charge flow, current and time are linked by the equation: charge flow $=$ current \times time or $Q=I t$
charge flow, Q , in coulombs, C
current, I , in amperes, A (amp is acceptable for ampere)
time, t, in seconds, s
A current has the same value at any point in a single closed loop.
Students should be able to recall and apply this equation.
L3: Revision from KS3
Current is measured using an ammeter which needs to be connected in series with the components. Series circuits only have one pathway for current to flow round. The current is the same anywhere in a series circuit. Parallel circuits have more than one pathway for current to flow through. Current divides between the branches. The sum of the current in each individual branch is the total of the current leaving the power supply. Potential difference is measured using a voltmeter, voltmeters need to be connected in parallel across a component, power supply or series of components. In a series circuit the sum of potential difference across each individual component equals the potential difference of the power supply. In a parallel circuit each branches PD adds up to the PD of the power supply.

L4: 6.2.1.3 Current, Resistance and Potential Difference,
The current (I) through a component depends on both the resistance (R) of the component and the potential difference (V) across the component. The greater the resistance of the componentthe smaller the current for a given potential difference (pd) across the component.

Current, potential difference or resistance can be calculated usingthe equation:
potential difference $=$ current \times resistance
$V=I R$
potential difference, V , in volts, V
current, I , in amperes, A (amp is acceptable for ampere)
resistance, R , in ohms, Ω

	 The current through a diode flows in one direction only. The diodehas a very high resistance in the reverse direction. The resistance of a thermistor decreases as the temperatureincreases. The applications of thermistors in circuits eg a thermostat isrequired. The resistance of an LDR decreases as light intensity increases. The application of LDRs in circuits eg switching lights on when it gets dark is required. Students should be able to: - explain the design and use of a circuit to measure the resistance of a component by measuring the current through, and potential difference across, the component - draw an appropriate circuit diagram using correct circuit symbols. Students should be able to use graphs to explore whether circuit elements are linear or non-linear and relate the curves produced totheir function and properties.	

L10/11: Required practical activity 16: use circuit diagrams to construct appropriate circuits to

 investigatethe I-V characteristics of a variety of circuit elements, including a filament lamp, a diode and a resistor at constant temperature.L12 6.2.2 Resistance in Series and Parallel Circuits
There are two ways of joining electrical components, in series andin parallel. Some circuits include both series and parallel parts.

For components connected in series:

- there is the same current through each component
- the total potential difference of the power supply is sharedbetween the components
the total resistance of two components is the sum of theresistance of each component. $R_{\text {total }}=R_{1}+$ R_{2}
resistance, R, in ohms, Ω
For components connected in parallel:
- the potential difference across each component is the same
- the total current through the whole circuit is the sum of thecurrents through the separate components
- the total resistance of two resistors is less than the resistanceof the smallest individual resistor.

Students should be able to:

- use circuit diagrams to construct and check series andparallel circuits that include a variety of common circuitcomponents
- describe the difference between series and parallel circuits
explain qualitatively why adding resistors in series increasesthe total resistance whilst adding resistors in parallel decreases the total resistance
- calculate the currents, potential differences and resistances indc series circuits
- solve problems for circuits which include resistors in seriesusing the concept of equivalent resistance.
explain the design and use of dc series circuits for measurement and testing purposes

Meden School Curriculum Planning - Medium Term Plan

