Meden School Curriculum Planning									
Subject	Biology	Year Group	10	Sequence No.	4	Торіс	Bioenergetics		

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to
students before they start teaching new		this sequence of learning to development
content?		of our students thinking, encouraging
		them to see the inequalities around them
		and 'do something about them!'
Year 9 Cardiovascular System and	L1: Photosynthesis uses energy to change carbon dioxide and water into glucose and oxygen. It takes	L4: What is the effect on the environment
Respiration L8: Respiration is not	place in chloroplasts in green plant cells, they contain pigments like chlorophyll that absorb light. Energy	of growing plants artificially
breathing. The word equation for	is transferred to the chloroplasts from the environment by light. Photosynthesis is endothermic so	(commercially)? What are the
respiration is: glucose + oxygen → carbon	energy is transferred from the environment. The word equation for respiration is: glucose + oxygen \rightarrow	alternatives? Will they or won't they solve
dioxide + water and the balanced symbol	carbon dioxide + water and the balanced symbol equation is: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$. Transfer	world hunger? What causes world
equation is: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 +$	energy from some of the glucose to convert the rest of the glucose into other, useful, substances.	hunger?
6H ₂ O. Energy is not created or destroyed,	Glucose is converted into cellulose to make strong plant cell walls. Glucose is combined with nitrates to	
it is transferred. Respiration occurs in	make amino acids. Nitrate ions are absorbed from the soil. Amino acids make proteins. Glucose is	L7: What do performance enhancing
animals and plant cells.	converted into lipids (fats and oils) for storing in seeds. Glucose is converted into starch and stored in the	drugs do to athletes? Why do athlete's
	roots, stems and leaves. Plants use the starch when it is not photosynthesising. Starch is insoluble	take performance enhancing drugs?
Year 9 Cardiovascular System and	(cannot dissolve) so it is a better storage molecule as it doesn't cause water to enter and swell the plant	Should an athlete be banned from all
Respiration L9: Anaerobic respiration	cell.	competitions if they are caught taking
starts when all the oxygen available is		performance enhancing drugs?
used up. The word equation for anaerobic	L2: The rate of photosynthesis is affected by the intensity of light, carbon dioxide concentration and	
respiration is: glucose -> energy and	temperature. This means that it is stopping photosynthesis from going any faster. They can depend upon	
factic acid. Only nair the energy is	environmental conditions such as hight (light) and winter (temperature). Chiorophyli can also be a	
respiration Lastic acid causes muscle	Chlorenlaste become damaged and de not make enough chlorenhull se they cannot absorb as much	
fatigue Ovygen debt is the amount of	light As light level increases the rate of photosynthesis increases steadily, but only up to a certain point	
extra oxygen the body needs to react with	after that it won't make a difference. Temperature or carbon diovide will now be the limiting factors	
the build-up of lactic acid and remove it	This is also true for carbon diovide (but the limiting factor may be temperature of light now) Light	
from cells. Pulse and breathing rate	intensity can be measured with a light meter . If temperature is too low, the enzymes needed for	
remains high whilst there are high levels	photosynthesis will be working slowly. Too high and they will be denatured which happens at about 45	
of lactic acid and carbon dioxide.	degrees Celcius.	

Year 9 Enzyme Activity L1: Metabolism is the sum of all the chemical reactions in the body or a single cell. Glucose is joined together to form starch, glycogen and cellulose. Lipids are made from one glycerol and three fatty acids. Glucose is combined with nitrate ions to make amino acids for proteins.

Year 9 Plant Structure & Photosynthesis 4: Photosynthesis takes place in the chloroplasts of cells. The word equation is: carbon dioxide + water \rightarrow glucose + oxygen. The balanced word equation is: $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$, it is the opposite of the equations for respiration.

Year 9 Plant Structure & Photosynthesis 7: Plants use glucose in five different ways: respiration, making cell walls, making amino acids, stored as fats or oils and stored as starch. L3: Pondweed can be used to measure the effect of light intensity on the rate of photosynthesis. The rate at which the pondweed produces oxygen corresponds to the rate at which it is photosynthesising. A source of white light is placed at a specific distance from the pondweed. It is let to photosynthesise for a set amount of time, the oxygen released will be collected in a capillary tube. A syringe is used at the end of the experiment to draw the gas bubble in the tube alongside a ruler and length of the gas bubble is measured. This is proportional to the volume of oxygen produced. The temperature and time left to photosynthesis are control variables. The test tube the pond weed is in can be put in a water bath at a set temperature or a measured amount of sodium hydrogencarbonate can be dissolved in the water, it releases carbon dioxide. The experiment can be repeated at different water temperatures or concentration of sodium hydrogen carbonate. Light intensity decreases in proportion to the square of the distance. This is the inverse square law: light intensity $\infty 1 / d^2$. So, if the distance is halved, the light intensity will be four times greater.

L4: Artificially creating the ideal conditions for plants includes growing them in a greenhouse. Greenhouses trap the Sun's heat and ensures temperature is not a limiting factor. Shades and ventilation is used in the Summer to cool the greenhouse down. Artificial light is used at night. Carbon dioxide levels are increased by using a paraffin heater. Plants in a greenhouse are also protected from pests and diseases, fertilizers can be added to provide minerals needed for healthy growth. If conditions are kept right plants will grow much faster and a decent crop will be harvested much more often and so sold. This needs to be balanced with cost.

L5: Energy transferred (from the breakdown of glucose) from respiration is used for all living processes. Respiration is not breathing. It goes on in every cell continuously, animal and plant cells. It is an exothermic process as energy is transferred to the environment. Energy from respiration is used to build larger molecules from smaller ones. In animals it is used to allow muscles to contract. In mammals and birds it is used to keep body temperature constant. Aerobic respiration uses oxygen and is the most efficient way to transfer energy from glucose, it takes place in mitochondria. The word equation for respiration is: glucose + oxygen \rightarrow carbon dioxide + water and the balanced symbol equation is: $C_6H_{12}O_6$ + $6O_2 \rightarrow 6CO_2 + 6H_2O$. When vigorous exercise is being done the body cannot supply enough oxygen to the muscles so anaerobic respiration (as well as aerobic respiration) begins. Anaerobic means without oxygen and is the incomplete breakdown of glucose which makes lactic acid. The word equation is glucose \rightarrow lactic acid. Glucose is not fully oxidised which is why not as much energy is transferred in comparison to aerobic respiration. Therefore, it is only useful in emergencies. Plant and yeast cells can respire without oxygen, but produce ethanol (alcohol) and carbon dioxide instead of lactic acid. The word equation for anaerobic respiration in plant and yeast cells is: glucose \rightarrow ethanol + carbon dioxide.

In yeast cells this is called fermentation and is used in the food and drinks industry to make bread and	
alcoholic drinks. The carbon dioxide causes bread to rise.	
L6: Metabolism is happening all of the time and is the sum of all the reactions that happen in a cell or	
the body. Chemical reactions happen all the time in cells, and they are controlled by enzymes. Many of	
these reactions are linked together to form bigger reactions. In some of these reactions larger molecules	
are made from smaller ones. Lots of glucose molecules are joined together in reactions to form starch (a	
storage molecule in plant cells), glycogen (a storage molecule in animal cells) and cellulose (a component	
of plant cell walls). Lipid molecules are made from one molecule of giverol and three fatty acids .	
Glucose is combined with nitrate ions to make amino acids which are then made into proteins . In other	
reactions larger molecules are broken down into smaller ones. Glucose is broken down in respiration to	
transfer energy to nower all reactions. Excess protein is broken down in a reaction to produce urea	
which is then evereted as urine	
which is then excleted as unne.	
L7: Muscles need energy from respiration to contract. When exercising some muscles contract more	
frequently than others so more energy than normal is needed so respiration increases. In turn more	
oxygen is also needed so breathing rate and breath volume increase to get more oxygen into the blood.	
Heart rate then increases to get this oxygenated blood around the body faster, so carbon dioxide is	
removed more quickly. When really vigorous exercise is done, the body cannot supply oxygen quick	
enough to muscles so anaerobic respiration occurs which is not the best way to transfer energy from	
glucose as lactic acid builds up in the muscles and gets painfu l. Long periods of exercise can also cause	
muscle fatigue. the muscles get tired and stop contracting efficiently. Once exercise has stopped there is	
an oxygen debt. This is the amount of extra oxygen needed to react with the build-up of lactic acid and	
remove it from cells in the form of carbon dioxide and water. The lungs, heart and blood couldn't keep	
up with the demand for oxygen. This means breathing is still hard after exercising has stopped to get	
more oxygen into the blood which is then transported to muscle cells. Pulse and breathing rate stay high	
whilst there are high levels of lactic acid and carbon dioxide. Blood that enters muscles transport lactic	
acid to the liver where it is converted back into glucose. Breathing rate can be measured by counting	
breaths and heart rate by taking a pulse . Two fingers are placed inside the wrist or neck and pulses are	
counted for one minute . Pulse rate will increase the more intense exercise is as the body needs more	
oxygen to the muscles and needs to take more caron dioxide away. To reduce the effect of random	
errors results can be done as a group with the average pulse rate plotted.	