Title: Volume, Compound Measure and Real Life Graphs

Key Knowledge/Prior Learning KS2/3 and Retrieval and Suggested Starters

- Know and apply formulae to calculate the volume of cuboids and other right prisms (including cylinders)
- Use standard units of measure and related concepts (length, area, volume / capacity, mass, time, money etc)

KS3 National Curriculum - what students will be practicing

- Calculate the volume of spheres, pyramids, cones and composite solids
- Change freely between related standard units (e.g. time, length, area, volume / capacity, mass) and compound units (e.g. speed, rates of pay, prices, density, pressure) in numerical and algebraic contexts
- Use compound units such as speed, rates of pay, unit pricing, density and pressure
- Plot and interpret graphs (including reciprocal graphs) and graphs of non-standard functions in real contexts, to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration
- Interpret the gradient of a straight-line graph as a rate of change

Specific Ambitious Knowledge

Key Vocabulary/Literacy Opportunities

- Dimensions
- Cross-section
- Prism
- Base
- Perpendicular Height
-

Key Formulae/Knowledge

Volume of cuboid $=$ Length \times Width \times Height
Volume of prism $=$ Cross section area \times Length

Volume of pyramids

Pyramids are another type of 3D shape. Pyramids can have different 2D shapes as their base - triangles, squares or rectangles. The formula for calculating the volume of a pyramid is:

$$
\text { Volume }=\frac{1}{3} \times \text { Perpendicular height } \times \text { Area of base }
$$

Volume of spheres

The formula for the volume of a sphere is:

$$
\text { Volume }=\frac{4}{3} \times \pi \times r^{3}
$$

Volume of cones

The formula for the volume of a cone is:

$$
\text { Volume }=\frac{1}{3} \pi \times r^{2} \times h
$$

Maths in Context (Historical, Real Life and Student Thinking Points).

- Link to accessible proof of the volume of a pyramid and cone (no calculus) https://nrich.maths.org/1408
- This leads to this idea to prove the volume of a sphere https://nrich.maths.org/1412

Projects/Enrichment/Investigations

- Immersion
- https://nrich.maths.org/2650?utm source=secondary-map
- Gutter
- Fill Me up Too
- Speeding Boats
- Speed-time Problems at the Olympics

