<u>Ratio</u>

Simplifying Ratios and Representing as Fractions	As both A as a Fraction of the whole, A as a fraction of B. substituting parts of the ratio into algebraic expressions.	Golden ratio face beauty
Dividing Into a Ratio	Divide into a given ratio using a variety of methods, including bar modelling.	Mixing liquids/ingredients together in the correct amounts. Fashion industry clothing sizes
Given Part of a Ratio Find the Whole or Other Parts	Solve problems involving one part or more/less than type questions. Use a variety of methods.	

Simplifying Ratios and Representing as Fractions	As both A as a Fraction of the whole, A as a fraction of B. substituting parts of the ratio into algebraic expressions.	Golden ratio face beauty
Dividing Into a Ratio	Divide into a given ratio using a variety of methods, including bar modelling.	Mixing liquids/ingredients together in the correct amounts. Fashion industry clothing sizes
Given Part of a Ratio Find the Whole or Other Parts	Solve problems involving one part or more/less than type questions. Use a variety of methods.	
Ratios as a Limiting Factor	Solve problems involving a limiting factor of the ratio. Use a variety of methods.	Working out how many/much you can make with the ingredients you have

Simplifying Ratios and Representing as Fractions	As both A as a Fraction of the whole, A as a fraction of B. substituting parts of the ratio into algebraic expressions.	Golden ratio face beauty
Dividing Into a Ratio	Divide into a given ratio using a variety of methods, including bar modelling.	Mixing liquids/ingredients together in the correct amounts. Fashion industry clothing sizes
Given Part of a Batio Find the Whole or Other Parts	Solve problems involving one part or more/less than type questions. Use a variety of methods.	
Ratios as a Limiting Factor	Solve problems involving a limiting factor of the ratio. Use a variety of methods.	Working out how many/much you can make with the ingredients you have
Three Way Ratio	Find equivalent parts of corresponding ratios in order to solve problems.	Fashion industry clothing sizes
Changing Ratios	Find parts and wholes of ratios when the ratios and parts have changed from the original.	

Key Knowledge/Prior Learning KS2/3 and Retrieval and Suggested Starters

- 4 operations
- Multipliers
- Fractions
- Factors and multiples
- solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.
- Multiplication/division
- Adding fractions
- HCF
- LCM
- Substitution

KS3 National Curriculum – what students will be practicing and Key Questions

- Understand that a multiplicative relationship between two quantities can be expressed as a ratio or a fraction
- Use ratio notation, including reduction to simplest form
- Expressing ratios as fractions
- Sharing an amount in a ratio
- Finding the total given part of a ratio
- Solve problems involving ratio (combining ratios)
- Using as a limiting factor
- Find equivalent parts of corresponding ratios

Specific Ambitious Knowledge

Pictorial representations/bar modelling

Key Vocabulary/Literacy Opportunities

- Simplify
- Equivalent
- Proportion
- Part Whole
- Combine
- Representing
- Share
- Corresponding
- Original

Key Formulae/Knowledge	
Sharing into a ratio	
Nikki : Gemma	
9 Boxes in total	
Value of each box = $£36 \div 9 = £4$ per box	
Nikki : Gemma	
£16 £20	
Parts known Laura makes some orange juice by mixing orange cordial and water in the ratio 3:10. She uses 42mL of orange cordial. How much water does she use? 14 14 14 14 14 14 14 14 14 14 14 3 parts = 42mL	
$1 \text{ part} = \frac{42}{2} \div 3 = \frac{14 \text{mL}}{2}$	
10 parts = $14 \times 10 = 140$ mL	
Laura uses 140mL of water.	
Differences known	
Beth and Emily share money in the ratio 3:5	
Emily receives £12 more than Beth.	
How much money does each girl receive?	
Beth	
Emily El Jo Po	
Students stop reading after £12, assuming the no comma, so no pause in reading.	that Emily gets £12 - emphasis

Maths in context (Historical, Real Life and Student Thinking Points).

Projects/Enrichment/Investigations	
Core: Coding	
Upper: Coding	
Set 1: Coding	