Working with Patterns

Arithmetic Sequences	Carry on a sequence and identify the term to term rule. Continue pictorial sequences. Includefractional. decimal. negative and algebraic. sequences
Nth Term	Guide learners to generalise a rule for the nth term of both positive and negative sequences. Use the nth term to find terms and justify if a to times tables number is in the sequence.
Draw Linear Equations	Draw linear equations focussing mainly on the link to sequences and substitution. At this point students do not need to draw higher demand equations.

Arithmetic Sequences	Corry on a eqquence and identify the term to term rule. Continue pictorisl sequences. loclude fractional decimal negative and algebraic aequences
Nth Term	Guide learners to generalize a rule for the nth term Link to times tobles of both positive and negotive sequences. Use the nth term to find terme snd justify if a number is in the zequence.
Geometric and Fibonscci \$equences	Underatand and identify different types of Notural sequences in the world sequences. Find mizsing values in geometric and Fibonacci sequences.
Draw Linear Equations	Draw linear equations focuzsing mainly on the link to sequences and zubstitution. At this point studente do not need to draw higher demond equations.

Arithmetic Sequences	Carry on a sequence and identify the term to term rule. Continue pictorial sequences. Include fractional decimal negative and algebraic sequences.
Nth Term	Guide learners to generalise a rule for the Link to times tables nth term of both positive and negative sequences. Use the nth term to find terms and justify if a number is in the sequence.
Geometric and Fibonacci Sequences	Understand and identify different types of Natural sequences in the world sequences. Find missing values in geometric and Fibonacci sequences.
Draw Linear Equations	Draw line ar equations focussing mainly on the link to sequences and substitution. At this point students do not need to draw higher demand equations.

Key Knowledge/Prior Learning KS2/3 and Retrieval and Suggested Starters

- Solving 1 step equations
- Understanding of inequality notation
- Expanding single brackets.
- Working with fractions, decimals and negative numbers.
- Substitute a value into an expression.
- Algebraic manipulation.
- Calculations
- Fraction calculations
- Substitution
- Is a number in a sequence
- Solving equations

KS3 National Curriculum - what students will be practicing and Key Questions

- Identifying how a sequence continues and finding future terms.
- Generate the nth term rule of a sequence and use the nth term of a sequence to generate terms.
- Identify different types of sequences focussing on those that are not linear and incorporation algebraic manipulation into other sequences.
- Draw linear equations involving skills of substitution and sequencing.

Specific Ambitious Knowledge

- Nth term by:

Using a table
Zeroth term method
Formula method a + (n-1)d
Substitution method
(Identifying the link between linear sequences and linear equations).
(See mathematical methods books for more info).

Key Vocabulary/Literacy Opportunities

- Linear
- Arithmetic
- Geometric
- Fibonacci
- Equal
- Variable
- Term
- Coefficient
- Substitution
- Indices
- "Nth"
- Constant
- Function

Key Formulae/Knowledge

Table Method
Example 2: Find the nth term of $70,65,60,55 \ldots$
find .
ind the common dirference. of the negative 5 times table.
We write out the negative 5 times table next to the sequence.

n	1	2	3	4
Term	70	65	60	55
-5 n	-5	-10	-15	-20

If we compare the second and third rows, we can see that each term in the sequence is 75 n than the equivalent term in the $-5 n$ row. In other words, to get the sequence, we take $-5 n$ and we add 75 .
Algebraically, this can be written as $-5 n+75$ or equivalent.

Zeroth Term method

```
Method B: Zeroth Term Method
Example 1: Find the nth term of 2, 6,10,14,\ldots
Find the common difference. Let's call this d}\mathrm{ . So here }d=+4\mathrm{ .
Now 'step back' from the first term. The first term is where }n=1\mathrm{ and we want the term where 
n=0.So subtract 4 from 2. Let's call this 'zeroth term' z.
The nth term is dn+z
Or if we call the first term }a\mathrm{ , we could say that the nth term is dn+(a-d).
Here, }d=4\mathrm{ and }z=-2\mathrm{ so the nth term is 4n-2.
Example 2: Find the nth term of 70,65,60,55,\ldots
Find the common difference. }d=-5\mathrm{ .
ind the zeroth term. This is the term before the first one. By looking at the pattern, this is
traightforward. In fact, most primary school children would be able to do this. }z=75\mathrm{ .
-5 and z=75 so the nth term is }-5n+75\mathrm{ . We can write this
The nth term is dn+z. He
```


Substitution Method

Method D: Substitution Method
Example 1: Find the \mathbf{n} th term of $\mathbf{2 , 6}, \mathbf{1 0}, \mathbf{1 4}, \mathbf{c}$ where d is the common difference and
All linear seque
Find the common difference d in the sequence $2,6,10,14$,
Here we have $d=+4$, so our nth term is $4 n+c$. . sequence. Say we use the first term, then we
To find the v
have $n=1$.

$$
\begin{aligned}
& \text { nth term }=4 n+c \\
& \text { 1st term }=4(1)+c \\
& 2=4(1)+c
\end{aligned}
$$

Solve this for c.

$$
2=4+c
$$

$$
\therefore c=-2
$$

There is no need to repeat this process with another term, but here we will verify that the answer
correct by using the third term too. Now we have $n=3$.

$$
\text { nth term }=4 n+c
$$

$$
3 \mathrm{rd} \text { term }=4(3)+c
$$

$$
10=4(3)+c
$$

$$
10=12+c
$$

Solving this we get $c=-2$ as before.
So now that we have $d=+4$ and $c=-2$ we know that the nth term is $4 n-2$

Formula Method

Method C: Formula Method
Example 1: Find the nth term of $\mathbf{2 , 6}, \mathbf{1 0}, \mathbf{1 4}, \ldots$
Use the formula $a+(n-1) d$.
Find the first term $(a=2)$ and the common difference $(d=4)$.
Substitute $a=2$ and $d=4$ into the formula $a+(n-1) d$.
Expand and simplify:

$$
\begin{gathered}
2+(n-1) 4 \\
=2+4 n-4 \\
=4 n-2
\end{gathered}
$$

Maths In Context (Historical, Real Life and Student Thinking Points)

Projects/Enrichment/Investigations

