Meden School Curriculum Planning							
Subject	Chemistry	Year Group	10	Sequence No.	15	Торіс	C2 Structure
							and Bonding

Retrieval	Core Knowledge	Student Thinking
What do teachers need to retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
 Y7 Physical and Chemical Change: Concept of chemical reactions rearranging atoms. Y8 Reactions of metals. Metals reacting with non-metals to form compounds. Y9 Periodic Table introduced the electronic configuration of noble gases and the concept of a full outer-shell Y8 Atomic structure introduced electrons Y8 Atomic Structure introduced the concept of ions being charged particles. Y9 History of the Atom and periodic table, revisited atomic structure Y9 History of the atom and periodic table, where to find metals and nonmetals on the periodic table. Y9 Trends on the periodic table, introduced electronic configuration and the concept of shells. Y9 Trends on the periodic table how ions are formed linked to electronic configuration and the loss or gain of electrons. 	L1 Chemical Bonds (5.2.1.1) There are three types of strong chemical bonds: ionic, covalent and metallic. For ionic bonding the particles are oppositely charged ions. For covalent bonding the particles are atoms which share pairs of electrons. For metallic bonding the particles are atoms which share delocalised electrons. Ionic bonding occurs in compounds formed from metals combined with non-metals. Covalent bonding occurs in most non-metallic elements and in compounds of non-metals. Metallic bonding occurs in metallic elements and alloys. L2 Ionic Bonding (5.2.1.2) When a metal atom reacts with a non-metal atom electrons in the outer shell of the metal atom are transferred. Metal atoms lose electrons to become positively charged ions. Non- metal atoms gain electrons to become negatively charged ions. The ions produced by metals in Groups 1 and 2 and by non-metals in Groups 6 and 7 have the electronic structure of a noble gas (Group 0). The electron transfer during the formation of an ionic compound can be represented by a dot and cross diagram, eg for sodium chloride Na • + $\times \overset{\times \times}{C} \times \times$ Students should be able to draw dot and cross diagrams for ionic compounds formed by metals in Groups 1 and 2 with non-metals in Groups 6 and 7. The charge on the ions produced by metals in Groups 1 and 2 and by non-metals in Groups 6 and 7. The charge on the ions produced by metals in Groups 1 and 2 and by non-metals in Groups 6 and 7 relates to the group number of the element in the periodic table. Students should be able to work out the charge on the ions of metals and non-metals from the group number of the element, limited to the metals in Groups 1 and 2, and non-metals in Groups 6 and 7.	Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms can be arranged in a variety of ways, some of which are molecular while others are giant structures. Theories of bonding explain how atoms are held together in these structures. Scientists use this knowledge of structure and bonding to engineer new materials with desirable properties. The properties of these materials may offer new applications in a range of different technologies.

	2. explain the different temperatures at which changes of state occur in terms of energy transfers	
	and types of bonding	
	3. recognise that atoms themselves do not have the bulk properties of materials	
	(HT only) explain the limitations of the particle theory in relation to changes of state when particles are	
	represented by solid inelastic spheres which have no forces between them.	
	In chemical equations, the three states of matter are shown as (s), (l) and (g), with (aq) for aqueous	
	solutions.	
	Students should be able to include appropriate state symbols in chemical equations for the reactions in	
	this specification.	
	L7 Properties of Ionic Compound (5.2.2.3) Ionic compounds have regular structures (giant ionic lattices)	
	in which there are strong electrostatic forces of attraction in all directions between oppositely charged	
	ions.	
	These compounds have high melting points and high boiling points because of the large amounts of energy	
	needed to break the many strong bonds.	
	When melted or dissolved in water, ionic compounds conduct electricity because the ions are free to	
	move and so charge can flow.	
	L8 Properties of Simple Covalent Molecules (5.2.2.4) Substances that consist of small molecules are	
	usually gases or liquids that have relatively low melting points and boiling points.	
	These substances have only weak forces between the molecules (intermolecular forces). It is these	
	intermolecular forces that are overcome, not the covalent bonds, when the substance melts or boils.	
	The intermolecular forces increase with the size of the molecules, so larger molecules have higher	
	melting and boiling points.	
Y9 Using resource s covered the properties	These substances do not conduct electricity because the molecules do not have an overall electric	
of metals. The formation of alloys and why	charge.	
they have different properties	Students should be able to use the idea that intermolecular forces are weak compared with covalent	Bronze the first alloy Around 3500 BC the
	bonds to explain the bulk properties of molecular substances.	first signs of bronze usage by the ancient
	L9 Giant Covalent Molecules and Polymers (5.2.2.5 & 6) Polymers have very large molecules. The atoms	Sumerians started to appear in the Tigris
	in the polymer molecules are linked to other atoms by strong covalent bonds. The in termolecular forces	Euphrates valley in Western Asia.
	between polymer molecules are relatively strong and so these substances are solids at room	
	temperature.	
	Students should be able to recognise polymers from diagrams showing their bonding and structure.	
	Substances that consist of giant covalent structures are solids with very high melting points. All of the	
	atoms in these structures are linked to other atoms by strong covalent bonds. These bonds must be	
	overcome to melt or boil these substances. Diamond and graphite (forms of carbon) and silicon dioxide	
	(silica) are examples of giant covalent structures.	

Students should be able to recognise giant covalent structures from diagrams showing their bonding and	Diamond mining: inequalites for those
structure.	who do the mining. <u>The Catastrophic</u>
L10: Properties of Metals (5.2.2.7 & 8) Metals have giant structures of atoms with strong metallic	Effects Of Mining Diamonds Ethica
bonding. This means that most metals have high melting and boiling points.	Diamonds UK
In pure metals, atoms are arranged in layers, which allows metals to be bent and shaped. Pure metals are	
too soft for many uses and so are mixed with other metals to make alloys which are harder. Students	
should be able to explain why alloys are harder than pure metals in terms of distortion of the layers of	
atoms in the structure of a pure metal. Metals are good conductors of electricity because the delocalised	
electrons in the metal carry electrical charge through the metal.	
Metals are good conductors of thermal energy because energy is transferred by the delocalised electrons	
L11: Structure of Diamond and Graphite (5.2.3.1 & 2) In diamond, each carbon atom forms four	
covalent bonds with other carbon atoms in a giant covalent structure, so diamond is very hard, has a very	Debate on the use of nanoparticles, Are
high melting point and does not conduct electricity. Students should be able to explain the properties of	they safe?
diamond in terms of its structure and bonding. In graphite, each carbon atom forms three covalent bonds	
with three other carbon atoms, forming layers of hexagonal rings which have no covalent bonds	
between the layers.	
In graphite, one electron from each carbon atom is delocalised.	
Students should be able to explain the properties of graphite in terms of its structure and bonding.	
Students should know that graphite is similar to metals in that it has delocalised electrons.	
L12: Graphene and Fullerenes (5.2.3.3) Graphene is a single layer of graphite and has properties that	
make it useful in electronics and composites.	
Students should be able to explain the properties of graphene in terms of its structure and bonding.	
Fullerenes are molecules of carbon atoms with hollow shapes. The structure of fullerenes is based on	
hexagonal rings of carbon atoms but they may also contain rings with five or seven carbon atoms.	
The first fullerene to be discovered was Buckminsterfullerene (C_{60}) which has a spherical shape.	
Carbon nanotubes are cylindrical fullerenes with very high length to diameter ratios. Their properties	
make them useful for nanotechnology, electronics and materials.	
Students should be able to:	
1. recognise graphene and fullerenes from diagrams and descriptions of their bonding and	
structure	
give examples of the uses of fullerenes, including carbon nanotubes.	