

Meden School Curriculum Planning								
Subject	Physics	Year Group	11	Sequence No.	19	Торіс	Electricity P2a	
							& Static	

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
KS2 Circuit diagrams and symbols.	L1: 6.2.1.1 Standard circuit diagram symbols	
Concept of a complete circuit. More	Circuit diagrams use standard symbols. Convention is power supply at the top, circuit is rectangular	
batteries = brighter bulbs. Higher		
voltage batteries = brighter bulbs. More bulbs in a series circuit = dimmer bulbs		
buids in a series circuit = diminer buids		
KS3 Y7 Simple Circuits: electricity is a flow of		
charge (electrons). Current is measured using an ammeter and has the units Amps. Series and parallel circuits.	-+ ⊢ cell(V) voltmeter	
Y9 Electricity and Resistance. Current and Potential difference trends in series and parallel. What is resistance, Ohms	-+ battery (A) ammeter	
Law and resistance of a wire practical. Domestic electricity and wires in a plug.	diode	
L2: Revision from KS3 Current is measured using an	thermistor	
ammeter which needs to be		
connected in series with the	LDR	
components. Series circuits only	7,	
have one pathway for current to		
flow round. The current is the same		

anywhere in a series circuit. Parallel 6.2.1.1 Electrical charge and current circuits have more than one For electrical charge to flow through a closed circuit the circuit must include a source of potential pathway for current to flow difference. Electric current is a flow of electrical charge. The size of the electric current is the rate of flow through. Current divides between of electrical charge. **Charge flow**, current and time are linked by the equation: charge flow = current \times the branches. The sum of the time or O = I tcurrent in each individual branch is charge flow, Q, in coulombs, C the total of the current leaving the current, I, in amperes, A (amp is acceptable for ampere) power supply. Potential difference is time. t. in seconds. s measured using a voltmeter, A current has the same value at any point in a single closed loop. voltmeters need to be connected in Students should be able to recall and apply this equation. parallel across a component, power supply or series of components. In a L2: 6.2.1.3 Current, Resistance and Potential Difference, series circuit the sum of potential The current (I) through a component depends on both the resistance (R) of the component and the difference across each individual **potential difference (V)** across the component. The greater the resistance of the componentthe smaller component equals the potential the current for a given potential difference (pd) across the component. difference of the power supply. In a parallel circuit each branches PD Current, potential difference or resistance can be calculated using the equation: adds up to the PD of the power *potential difference = current × resistance* supply. V = I Rpotential difference, V, in volts, V current, I, in amperes, A (amp is acceptable for ampere) resistance, R in ohms, Ω Students should be able to recall and apply this equation. L3/4: Required practical activity 3: use circuit diagrams to set up and check appropriate circuits to investigate the factors affecting the resistance of electrical circuits involving combinations of resistors in series and parallel. L5/6: : Required practical activity 3: use circuit diagrams to set up and check appropriate circuits to investigate the effect of the length of a wire on the resistance L7: 6.2.1.4 Resistors

• the total potential difference of the power supply is sharedbetween the components	
the total resistance of two components is the sum of the resistance of each component. $R_{total} = R_1 + R_2$	
resistance, R, in ohms, Ω	
For components connected in parallel:	
the potential difference across each component is the same	
 the total current through the whole circuit is the sum of thecurrents through the separate components 	
• the total resistance of two resistors is less than the resistance of the smallest individual resistor.	
Students should be able to:	
 use circuit diagrams to construct and check series and parallel circuits that include a variety of common circuitcomponents 	
 describe the difference between series and parallel circuits 	
explain qualitatively why adding resistors in series increasesthe total resistance whilst adding resistors in parallel decreases the total resistance	
calculate the currents, potential differences and resistances indc series circuits	
 solve problems for circuits which include resistors in seriesusing the concept of equivalent resistance. 	
explain the design and use of dc series circuits for measurement and testing purposes	
L11 Static Charge	
When certain insulating materials are rubbed against each other they become electrically charged. Negatively charged electrons are rubbed off one material and on to the other. The material that gains electrons becomes negatively charged. The material that loses electrons is left with an equal positive charge. When two electrically charged objects are brought close together they exert a force on each other. Two objects that carry the same type of charge repel. Two objects that carry different types of charge attract. Attraction and repulsion between two charged objects are examples of non-contact force.	
L12 Electric Fields	<u> </u>