		Meden School Curriculum Planning					
Subject	Physics	Year Group	10 TRIPLE	Sequence No.	13	Торіс	P6
							Waves a & b

Retrieval	Core Knowledge	Student Thinking
What do teachers need retrieve from students before they start teaching new content ?	What specific ambitious knowledge do teachers need teach students in this sequence of learning?	What real life examples can be applied to this sequence of learning to development of our students thinking, encouraging them to see the inequalities around them and 'do something about them!'
KS3: Water waves are transverse, oscillations are perpendicular.	L1: Waves may be either transverse or longitudinal .	
Longitudinal waves like sound have oscillations parallel. Waves transfer	The ripples on a water surface are an example of a transverse wave.	
energy. Waves can be reflected.	Longitudinal waves show areas of compressio n and rarefactio n. Sound waves travelling through air are longitudinal.	
KS3: Transverse waves have crests, troughs and displacement.	Students should be able to describe the difference between longitudinal and transverse waves. Students should be able to describe evidence that, for both ripples on a water surface and sound waves in air, it is the wave and not the water or air itself that travels.	
	Students should be able to describe wave motion in terms of their amplitude , wavelength, frequency and period.	
	The amplitude of a wave is the maximum displacement of a point on a wave away from its undisturbed position.	
	The wavelength of a wave is the distance from a point on one wave to the equivalent point on the adjacent wave.	
	The frequency of a wave is the number of waves passing a point each second .	
	L2: period = 1 frequency	

KS3 sound can be reflected of refracted. Sound travels as a pressure way through particles.	$T = \frac{1}{f}$ period, <i>T</i> , in seconds, s frequency, <i>f</i> , in hertz, Hz The wave speed is the speed at which the energy is transferred (or the wave moves) through the medium. All waves obey the wave equation: <i>wave speed</i> = <i>f requency</i> × <i>wavelength</i> $v = f \lambda$ wave speed , <i>v</i> , in metres per second, m/s frequency, <i>f</i> , in hertz, Hz wavelength , λ , in metres, m Students should be able to:	Designing comfortable and safe structures such as bridges, houses
KS3 Light waves are transverse, they transfer energy without the need of particles. They can travel in a vacuum. Light waves always travel a the same speed in a vacuum = 3 x 10 ⁸ m/s. Light slows down when in enters materials. Refraction occurs when light enters a medium. Less dense to more dense, refracts towards the normal and vice versa.	 Jentify amplitude and wavelength from given diagrams L3: describe a method to measure the speed of sound waves in air describe a method to measure the speed of ripples on a water surface. (Physics only) Students should be able to show how changes in velocity, frequency and wavelength, in transmission of sound waves from one medium to another, are interrelated. Required practical activity 8: make observations to identify the suitability of apparatus to measure the frequency, wavelength and speed of waves in a ripple tank L4: and waves in a solid and take appropriate measurements. (waves on a string prac) L5: Waves can be reflected at the boundary between two different materials. Waves can be absorbed or transmitted at the boundary between two different 	and music performance halls requires an understanding of mechanical waves and resonance

materials.	
Students should be able to construct ray diagrams to illustrate the reflection of a wave at a surface.	
Students should be able to describe the effects of reflection, transmission and absorption of waves at material interfaces.	
L6: (HT only) Different substances may absorb, transmit, refract or reflect electromagnetic waves in ways that vary with wavelength.	
(HT only) Some effects, for example refraction, are due to the difference in velocity of the waves in different substances.	Modern technologies such as imaging and communication systems show how
Students should be able to construct ray diagrams to illustrate the refraction of a wave at the boundary between two different media	we can make the most of electromagnetic waves.
(HT only) Students should be able to use wave front diagrams to explain refraction in terms of the change of speed that happens when a wave travels from one medium to a different medium.	
L7: Required practical activity 9 (physics only): investigate the reflection of light by different types of surface and the refraction of light by different substances.	
L8: Electromagnetic waves are transverse waves that transfer energy from the source of the waves to an absorber .	
Electromagnetic waves form a continuous spectrum and all types of electromagnetic wave travel at the same velocit y through a vacuum (space) or air.	
The waves that form the electromagnetic spectrum are grouped in terms of their wavelength and their frequency. Going from long to short wavelength (or from low to high frequency) the groups are: radio, microwave, infrared, visible light (red to	
violet), ultraviolet, X- rays and gamma rays.	Debate about whether sunbeds should be banned
	Look at occurrence of skin cancer across the population. Who is most at risk, what precautions should be taken?

	Long wavelength –				> S	Short wavelengt	h	
	Radio waves Microwav	s Infrared	Visible light	Ultraviolet	X-rays	Gamma rays		
	Low frequency —			1	•	High frequency	У	Why are houses painted white in the
KS3: Black absorbs all frequencies of	Our eyes only d waves.	tect visi	ole light	and so de	tect a li	mited range	of electromagnetic	Mediterranean? Should radiators be black or white?
	Students should electromagnetic							
	Electromagnetic							
	radio waves – 1 microwaves – 9 infrared – elect visible light – f ultraviolet – en	elevision atellite c ical heat ore optic rgy effic	and rac ommun ers, coc commu ient larr	lio ications, c oking food inications ips, sun ta	ooking , infrar nning	l food ed cameras		
	X-rays and gan	ma rays	– medic	al imaging	g and t	reatments.		
	(HT only) Stude electromagnetic	ts should wave is s	be able uitable f	to give brie or the prac	ef expla tical ap	anations why oplication.	each type of	
	L9: (HT only) R	dio wave	s can be	produced	by osc	illations in e	electrical circuits.	
	(HT only) When with the same f r induce oscillation	adio wav equency ns in an e	es are a as the ra lectrical	bsorbed ti adio wave i circuit.	h ey ma tself, so	y create an a o radio wave	alternating current es can themselves	
	Changes in ator generated or a l changes in the r	s and the sorbed c ucleus of	nuclei ver a wi an atom	of atoms of de frequen	cy rang	ult in electror je. Gamma r	magnetic waves bein ays originate from]
	L10: Required radiation absort surface.	oractical ed or rad	activity ated by	10: investi a surface c	gate ho lepend	ow the amou s on the natu	nt of infrared ure of that	

L11: (HT only) The temperature of the Earth depends on many factors including: the rates of absorption and emission of radiation, reflection of radiation into space.	
(HT only) Students should be able to explain how the temperature of a body is related to the balance between incoming radiation absorbed and radiation emitted, using everyday examples to illustrate this balance, and the example of the factors which determine the temperature of the Earth.	
(HT only) Students should be able to use information, or draw/ interpret diagrams to show how radiation affects the temperature of the Earth's surface and atmosphere.	
L12: Each colour within the visible light spectrum has its own narrow band of wavelength and frequency.	
Reflection from a smooth surface in a single direction is called specular reflection . Reflection from a rough surface causes scattering: this is called diffuse reflection .	
Objects that transmit light are either transparent or translucent. Students should	
be able to explain:	
how the colour of an object is related to the differential absorption, transmission and reflection of different wavelengths of light by the object the effect of viewing objects through filters or the effect on light of passing through filters why an opaque object has a particular colour.	
L13: Colour filters work by absorbing certain wavelengths (and colour) and transmitting other wavelengths (and colour).	
The colour of an opaque object is determined by which wavelengths of light are more strongly reflected. Wavelengths that are not reflected are absorbed. If all wavelengths are reflected equally the object appears white. If all wavelengths are absorbed the objects appears black.	
L14: All bodies (objects), no matter what temperature, emit and absorb infrared radiation. The hotter the body, the more infrared radiation it radiates in a given time.	

A perfect black bod y is an object that absorbs all of the radiation incident on it. A black body does not reflect or transmit any radiation. Since a good absorber is also a good emitter, a perfect black body would be the best possible emitte r.	
Students should be able to explain:	
that all bodies (objects) emit radiatio n that the intensity and wavelength distribution of any emission depends on the temperature of the body.	
(HT only) A body at constant temperature is absorbing radiation at the same rate as it is emitting radiation. The temperature of a body increases when the body absorbs radiation faster than it emits radiation.	
L15: uses of xrays and gamma in medication – how xrays work and sterilization of equipment	
L16: Ultraviolet waves, X-rays and gamma rays can have hazardous effects on human body tissue. The effects depend on the type of radiation and the size of the dose. Radiation dose (in sieverts) is a measure of the risk of harm resulting from an exposure of the body to the radiation.	
1000 millisieverts (mSv) = 1 sievert (Sv)	
Students will not be required to recall the unit of radiation dose.	
Students should be able to draw conclusions from given data about the risks and consequences of exposure to radiation.	
Ultraviolet waves can cause skin to age prematurely and increase the risk of skin cancer . X-rays and gamma rays are ionising radiation that can cause the mutation of genes and cancer.	
L17: revision	
L18: Test	
L19: GPA	