Key Knowledge/Prior Learning KS2/3 and Retrieval and Suggested Starters

- Area of rectangles, triangles, parallelograms, trapeziums and compound shapes.
- Area of circles
- Convert between units of measurements \& area.
- Know properties of 3D shapes.
- Perimeter of 2D shapes including circles.
- Manipulating \& working with decimals.

Retrieval and Suggested Starters

- Practising the fluency of the above skills.
- Interleaving \& problem-solving questions involving the above topics.

KS4 National Curriculum - what students will be practicing

- Calculate the volume of cuboids \& prisms including cylinders.
- Use formulae to calculate the volume of pyramids, cones \& spheres.
- Calculate the surface area of cuboids \& prisms including cylinders.
- Use formulae to calculate the surface area of pyramids, cones \& spheres.
- Evaluate and use the speed, distance, time relationship to solve problems.
- Evaluate and use the density, mass, volume relationship to solve problems.
- Manipulate \& evaluate problems linked to rates of pay.

Specific Ambitious Knowledge

- Interleaving topics \& problem-solving scenarios.

Key Vocabulary/Literacy Opportunities

- Volume
- Surface area
- Length, width, height
- Perpendicular
- Parallel
- Circumference
- Radius
- Diameter
- Units of measure (mph, kilometres, etc)
- Pounds, pence
- Conversion
- Density
- Mass

Key Formulae/Knowledge:

Volume of a prism $=$ area of cross section \times length
Where r is the radius and d is the diameter:
Circumference of a circle $=2 \pi r=\pi d$
Area of a circle $=\pi r^{2}$

SKILLS Helping You Develop	NEED	Area, Surface Area \& Volume reference sheet		
Two-dimensional plane shapes	Area The measure of how many squares will fit into a shape. Units ${ }^{2}$	Three-dimensional solid shapes	Surface Area The measure of the area of all outward facing sides. Units ${ }^{2}$	Volume The measure of how many cubes will fit into a shape. Units ${ }^{3}$
	$\begin{gathered} \text { Area }=a^{2} \text { or } a \times a \\ \text { Example: } \\ a=5 \mathrm{~cm} \\ \text { Area }=5^{2}=25 \mathrm{~cm}^{2} \end{gathered}$		$\begin{gathered} \text { Surface Area }=6 \times \mathrm{a}^{2} \\ \text { Example: } \\ a=5 \mathrm{~cm} \\ \text { Surface Area }=150 \mathrm{~cm}^{2} \end{gathered}$	$\begin{gathered} \text { Volume }=a^{3} \text { or } \mathrm{a} \times \mathrm{a} \times \mathrm{a} \\ \text { Example: } \\ a=5 \mathrm{~cm} . \\ \text { Volume }=125 \mathrm{~cm}^{3} \end{gathered}$
	$\begin{gathered} \text { Area }=w \times h \\ \text { Example: } \\ w=\text { width }=10 \mathrm{~cm} \\ \text { height }=20 \mathrm{~cm} \\ \text { Area }=10 \times 20=200 \mathrm{~cm}^{2} \end{gathered}$		$\begin{gathered} \text { Surface Area }=2 \times \mathrm{ba}+\mathrm{la} \\ \text { Example: } \\ \text { ba }=\text { base area }=20 \mathrm{~cm}^{2} \\ \text { la }=\text { lateral } \text { areae }(\text { all sides })=60 \mathrm{~cm}^{2} \\ \text { Surface area }= \\ 2 \times 20+60=100 \mathrm{~cm}^{2} \end{gathered}$	$\begin{gathered} \text { Volume }=\mathrm{ba} \times \mathrm{h} \\ \text { Example: } \\ \text { ba }=\text { base area }=20 \mathrm{~cm}^{2} \\ h=\text { height }=5 \mathrm{~cm} \\ \text { Volume }=20 \times 5=100 \mathrm{~cm}^{3} \end{gathered}$
	$\begin{gathered} \text { Area }=b \times h \times 0.5 \\ \text { Example: } \\ b=\text { base }=20 \mathrm{~cm} \\ h=\text { vertical height }=15 \mathrm{~cm} \\ \text { Area }=20 \times 15 \times 0.5=150 \mathrm{~cm}^{2} \end{gathered}$		$\begin{gathered} \text { Surface Area }=\mathrm{ba}+\mathrm{la} \\ \text { Example: } \\ \text { ba } a \text { base area }=16 \mathrm{~cm}^{2} \\ \text { la } a \text { lateral area }(\text { all sides) }) 60 \mathrm{~cm}^{2} \\ \text { Surface area }=16+60=76 \mathrm{~cm}^{2} \end{gathered}$	$\begin{gathered} \text { Volume }=\text { ba } \times \mathrm{h} \times 1 / 3 \\ \text { Example: } \\ \text { ba }=\text { base area }=16 \mathrm{~cm}^{2} \\ h=\text { height }=9 \mathrm{~cm}^{2} \\ \text { Volume }=16 \times 9 \times 1 / 3=48 \mathrm{~cm}^{3} \end{gathered}$
	Area $=n \times s \times a \times 0.5$ Example: $n=$ number of sides $=6$ length of side $=5 \mathrm{~cm}$ $a=$ apothem $=15 \mathrm{~cm}$ Area $=6 \times 5 \times 15 \times 0.5=225 \mathrm{~cm}^{2}$	Coll	Surface Area $=\mathrm{fa} \times \mathrm{s}$ Example: $f a=$ area of one side $=200 \mathrm{~cm}^{2}$ $s=$ number of sides $=12$ Surface area $=200 \times 12=2400 \mathrm{~cm}^{2}$	Example: There is no simple generic formula for working out the volume of a regular polyhedron.
	$\begin{gathered} \text { Area }=\pi \times r^{2} \\ \text { Example: } \\ \pi=p i=3.14 \\ r=r \text { radius }=5 \mathrm{~cm} \\ \text { Area }=3.14 \times 5^{2}=3.14 \times 5 \times 5= \\ 78.5 \mathrm{~cm}^{2} \end{gathered}$		$\begin{gathered} \text { Surface Area }=4 \times \pi \times \mathrm{r}^{2} \\ \text { Example: } \\ r=\text { radius }=4.5 \mathrm{~cm} \\ \text { Surface area }=4 \times 3.14 \times 20.25 \\ =254.5 \mathrm{~cm}^{2}(\text { Approx }) \end{gathered}$	$\begin{gathered} \text { Volume }=4 / 3 \times \pi \times r^{3} \\ \text { Example: } \\ r=\text { radius }=4.5 \mathrm{~cm} \\ \text { Volume }=4 / 3 \times 3.14 \times 4.5^{3} \\ =381.5 \mathrm{~cm}^{3}(\text { Approx }) \end{gathered}$
	Area $=\pi \times a \times b$ Example: $\pi=$ pi $=3.14$ $a=$ radius of long $a x i s=6$ $b=$ radius short axis $=4$ Area $=3.14 \times 6 \times 4 \times 5=75.36 \mathrm{~cm}^{2}$		$\begin{gathered} \text { Surface Area }=2 \pi r h+2 \pi r^{2} \\ \text { Example: } \\ r=\text { radius }=5 \mathrm{~cm} \\ h=\text { height }=10 \mathrm{~cm} \\ \text { Surface area }=2 \times 3.14 \times 5 \times 10 \\ +2 \times 3.14 \times 25=471 \mathrm{~cm}^{2} \end{gathered}$	Volume $=\pi \times r^{2} \times h$ Example: Volume $=3.14 \times 25 \times 10$ $=785 \mathrm{~cm}^{3}$ (Approx)

(Not polyhedron)

Cross Curricular Links

- Links to other areas of the maths curriculum such as algebra, percentages, etc.

Student' Thinking

- Is volume always greater than surface area?
- How can we use our knowledge of area to help us with volume?

Projects/Enrichment/Investigations

- Shared documents/Maths/Projects/Problem-solving card sorts.
- https://www.mathscareers.org.uk/wpcontent/uploads/2014/06/StemCareers PackagingDesign.pdf
- https://www.bowlandmaths.org.uk/projects/mystery tours.html\#sec2
- Cre8- Packaging Project
- Cuboids
- Cuboid Challenge
- https://nrich.maths.org/2650?utm source=secondary-map
- Changing Areas, Changing Volumes
- https://nrich.maths.org/5888?utm source=secondary-map

