Year 10 Foundation

Key Knowledge/Prior Learning KS2/3 and Retrieval and Suggested Starters

- Four operations with all numbers.
- Coordinates in all four quadrants.
- Plot straight lines such as x=, y=,

Retrieval and Suggested Starters

- Practicing the fluency of the above skills.
- Interleaving & problem-solving questions involving the above topics.

KS4 National Curriculum – what students will be practicing

- Identify lines of symmetry on a given shape.
- Identify order of rotational symmetry.
- Reflect a shape in a given line.
- Translate a shape given written instructions or vectors.
- Enlarge a shape by a positive integer or fractional scale factor.
- Describe a translation as a 2D vector.
- Add/Subtract vectors and multiply by a scalar.
- Identify, describe and construct congruent & similar shapes.

Specific Ambitious Knowledge

- Interleaving topics & problem-solving scenarios.
- Use a centre of enlargement.

Key Vocabulary/Literacy Opportunities

- Translation
- Reflection
- Vector
- Rotation
- Enlargement
- Scale factor
- Quadrant
- Similarity
- Congruence
- Fractional.

The Triangle Law of Vector A

Adding two vectors is equivalent to applying one vector followed by example,

Suppose

$$a = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

and
$$\mathbf{b} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

Find a + b

We can represent this addition in the following diagram:

$$a + b = \begin{bmatrix} 8 \\ 1 \end{bmatrix}$$

Cross Curricular Links

- Similarity and enlargement links to scales and scale models allowing us to calculate new lengths, surface areas and volumes i.e. comparing models and real life.
- Transformations preserve parallel lines and distances from points, so are therefore used by number of disciplines.
- Vectors links directly to physics but also other areas such as PE in relation to forces applied and movement – higher ability students could be exposed to mechanics as an extension.

Student' Thinking

- Can a shape get smaller when you enlarge it?
- Which way round should the shape be after a rotation of...?

Pro	iects/	/Enri	chme	nt/Inv	estiq	ations

- Task using all transformation to make a word/shape.

 Transformations short problems

 Nrich problems:

Reflecting Squarely	Transformation Game
Shady Symmetry	Robotic Rotations
Mirror, Mirror	
on the Wall	
Attractive Rotations	