Title: 2D Representations and Surface Area
Key Knowledge/Prior Learning KS2/3 and Retrieval and Suggested Starters

- Symmetry
- Area of 2D shapes
- Area and circumference of circles
- Faces, edges, vertices

KS3 National Curriculum - what students will be practicing and key questions

- Draw plans and elevations
- Draw isometric drawings
- Calculate the surface area of cubes and cuboids
- Calculate the surface area of triangular prisms
- Calculate the surface area of compound prisms
- Calculate the surface area of cylinders

Specific Ambitious Knowledge

- Draw 3D shape from its plan and elevation
- Missing lengths when given surface area
- Surface area of spheres and cones

Key Vocabulary/Literacy Opportunities

- Face, edges, vertices
- Front elevation
- Plan elevation
- Isometric
- Surface area
- Length, width, height
- Radius, diameter, circumference

Key Formulae/Knowledge

Figure	Formula	Variables
Cube	$6 \times \mathrm{a}^{2}$	$a=$ length of edge
Rectangular prism h	$2(1 \times w+w \times h+h \times l)$	$\begin{aligned} & \text { I = length } \\ & \text { w = width } \\ & \text { h= height } \end{aligned}$
Cylinder	$\begin{aligned} & 2 \times \pi \times r^{2}+2 \times \pi \times r \times h \\ & =2 \times \pi \times r \times(r+h) \end{aligned}$	$\begin{aligned} & \mathrm{r}=\text { radius of circular face } \\ & \mathrm{h}=\text { height } \end{aligned}$
Cone	$\begin{aligned} & \pi \times r \times s+\pi \times r^{2} \\ & =\pi \times r \times(s+r) \end{aligned}$	$\begin{aligned} & \mathrm{r}=\text { radius of circular base } \\ & \mathrm{h}=\text { height from tip to base } \\ & \mathrm{s}=\text { slant height }\left(\mathrm{sqrt}\left(\mathrm{r}^{2}+\mathrm{s}^{2}\right)\right) \end{aligned}$
Sphere	$4 \times \pi \times r^{2}$	$r=$ radius

Maths in Context (Historical, Real Life and Student Thinking Points)

Projects/Enrichment/Investigations

- Cuboids problem https://nrich.maths.org/cuboids/note
- Colourful cube https://nrich.maths.org/11178/note

