Percentages

Key Knowledge/Prior Learning KS2/3 and Retrieval and Suggested Starters

- Division
- Decimal calculations
- FDP conversions
- BIDMAS
- Indices (inc indices calculations)
- Comparing ratios and fractions (FDPR)
- Time and Money calculations

KS3 National Curriculum - what students will be practicing and Key Questions
Proportional Reasoning:
Percentages inc Growth and Decay:

- Representing and comparing percentages
- Percentages of amounts
- Percentage increase/decrease
- Reverse percentages
- Percentage change
- Simple interest
- Repeated percentage change.

Specific Ambitious Knowledge

Key Vocabulary/Literacy Opportunities

- Proportion
- Percent
- Increase \& decrease
- Original amount
- Interest
- Simple Vs Compound Interest
- Annum
- Multiplier
- Indices/Powers
- Depreciation
- Profit
- Loss

Key Formulae/Knowledge and Misconceptions

Multipliers

40\%	b	55\%	c	96\%
0.4		0.55		0.96
9\%	e	3.2\%	1	62.5\%
0.09		0.032		0.625
123\%	h	0.68\%	i	625.9\%
1.23		0.0068		6.259

Multiplication making numbers bigger - so reluctance to use these to find percentages

Percentage Change

$\begin{aligned} & \text { Percentage } \\ & \text { Change } \\ & \text { Formula }\end{aligned}=\frac{\text { New Value - Original Value }}{\text { Original Value }} \times 100$

Reverse percentages
David's pay increases by 20% to $£ 10.80$ an hour.
What was his pay before the increase?

$$
\begin{aligned}
& \div 120 \mathrm{C}=120 \% \longrightarrow 10.802 \div 120 \\
& \times 100 \mathrm{~d} 10 \rightarrow \neq 0.09 \mathrm{~J} \times 100 \\
& 100 \% \rightarrow \mathcal{L} 9
\end{aligned}
$$

Simple Interest

Simple interest: $\mathrm{I}=\mathrm{p} \times \mathrm{r} \times \mathrm{t}$
$\mathrm{I}=$ interest earned after t years
$\mathrm{p}=$ money borrowed or invested
$\mathrm{r}=$ annual rate of interest
$\mathrm{t}=$ the length of time you borrow
or invest

£2000 is invested at 10\%

simple interest.
What is the value at the end of year 1 ?
$10 \%=200$
$=2000+200$
$=2200$
What is the value at the end
of year 2?
$10 \%=200$
$=2000+(200 \times 2)$
$=2400$
What is the value at the end
of year 20?
$10 \%=200$
$=2000+(200 \times 20)$
$=6000$


```
1 'st Year = 220 }\times0.8
                                \Omega
2 nd Year = }(220\times0.85)\times0.8
                            \Omega
3 rd Year = ((220 * 0.85) * 0.85) * 0.85 =£135.11
n
```


Formula: Years
A 10% loss each year for 2 years, equals a 20% loss is a common misconception. Students fail to realise the percentage is based on a new amount after year 1.

Maths in Context (Historical, Real Life and Student Thinking Points)

Projects/Enrichment/Investigations

- Percentage CrossNumber
- Percentages of percentages of amounts
- Repeated percentage change number search
- Percentages Treasure Hunt

Project Ideas:
Car hunting: https://www.tes.com/teaching-resource/functional-percentages-ks3-gcse6229469

